Translate

segunda-feira, 9 de julho de 2012

DEVASTAÇÃO
Efeitos do El Niño fizeram que corais parassem de crescer há 4 mil anos
Max Miliano Melo -
Publicação: 06/07/2012 15:54Atualização:
Os corais do Panamá foram escolhidos pelos pesquisadores para a análise. Foto: Richard Aronson/Nature/Divulgação
Os corais do Panamá foram escolhidos pelos pesquisadores para a análise. Foto: Richard Aronson/Nature/Divulgação
Os recifes de corais estão entre as estruturas mais importantes para o equilíbrio na vida nos oceanos. Estima-se que 25% de toda a vida marinha vivam nessas formações calcárias, que abrigam até 9 milhões de espécies de animais, vegetais e micro-organismos. Uma pesquisa divulgada na edição de hoje da revista científica Science mostrou que, há cerca de 4 mil anos, essas estruturas-chave dos mares entraram em colapso. O El Niño, fenômeno que leva água quente para o Pacífico Oriental, fez os corais pararem de crescer por até dois milênios. A descoberta ajuda a entender o que pode acontecer com as estruturas atuais caso as mudanças climáticas não sejam freadas.

Para chegar à essa conclusão, os pesquisadores utilizaram regiões mortas de corais. “Com tubos de alumínio, extraímos registros históricos que remontam 6 mil anos atrás, o tempo total de vida dos recifes até agora”, explica Richard Aronson, diretor do Departamento de Ciências Biológicas da Flórida. Depois de analisar as amostras e a datação das diversas camadas de coral, os pesquisadores conseguiram determinar o processo de evolução dos recifes. “Descobrimos que os recifes cresceram rapidamente no início, há cerca de 6 mil anos, mas eles pararam de crescer abruptamente”, completa o especialista norte-americano.
Risco de extinção
Comissão baleeira proíbe a caça de cetáceos a nativos da Groenlândia
AFP - Agence France-Presse
Publicação: 05/07/2012 16:19Atualização:
As caudas de duas baleias de 35 toneladas presas num barco pesqueiro no litoral norte de Feykjavik. Foto: Halldor Kolbeins/AFP/Arquivo
As caudas de duas baleias de 35 toneladas presas num barco pesqueiro no litoral norte de Feykjavik. Foto: Halldor Kolbeins/AFP/Arquivo

O organismo internacional que regula o comércio e a caça de baleias negou nesta quinta-feira uma proposta da Dinamarca para estender os direitos de caça de baleias aos povos aborígenes da Groenlândia.

Isso significa que os nativos da Groenlândia não poderão caçar nenhuma baleia depois que terminar sua cota no final de 2012.

Em um resultado que surpreendeu alguns observadores, os demais membros da União Europeia votaram contra a Dinamarca na reunião anual da Comissão Baleeira Internacional (CBI) realizada no Panamá, depois de não se chegar a um acordo para reduzir os limites de captura propostos.

Delegados e ambientalistas expressaram sua preocupação pela venda extendida de carne de baleia na Groenlândia, uma região autônoma da Dinamarca, e consideraram que isso evidencia uma caça comercial encoberta e não uma pesca de indígenas para sua subsistência, permitida na moratória sobre a caça comercial vigente.

A Dinamarca propôs que os povos indígenas da Groenlândia pudessem caçar até 1.326 baleias entre 2013 e 2018, incluindo dez baleias corcundas por ano, um leve aumento em relação a um acordo estabelecido há dois anos depois de prolongadas negociações.

A iniciativa foi apoiada por 25 nações e obteve 34 votos contra e três abstenções. Os representantes da Dinamarca e Groenlândia expressaram sua indignação e sugeriram que estão pensando em deixar a comissão.
Higgs admite não saber para que serve a "partícula de Deus"
Agência O Globo
Publicação: 06/07/2012 21:10Atualização:
 
Centro das atenções nos últimos dias após o anúncio, na quarta-feira (04), da descoberta de uma nova partícula subatômica com características compatíveis com o bóson que previa existir, o físico Peter Higgs admite “não ter ideia” de qualquer aplicação prática para o achado. Em sua primeira grande entrevista depois que cientistas trabalhando no Centro Europeu de Pesquisas Nucleares (Cern) confirmaram a descoberta do bóson, apelidado “partícula de Deus”, Higgs, de 83 anos, voltou a dizer que ficou feliz com ela ter acontecido enquanto ainda está vivo e destacou a dificuldade que seria para os teóricos o caso se sua previsão não tivesse se confirmado.

"A partícula só vive por um período muito curto, um milionésimo de milionésimo de milionésimo de milionésimo de segundo, então não sei como isso pode ser aplicado a qualquer coisa útil", disse. "Não tenho ideia de como criar uma aplicação para alvo com uma vida tão curta".

Perguntado sobre a longa espera para que o bóson fosse descoberto, 40 anos desde a publicação de suas ideias, em 1964, Higgs contou nunca ter deixado de acreditar que estava certo.

"A existência desta partícula é tão crucial para a compreensão do resto da teoria (do Modelo Padrão da Física, que busca explicar o Universo em escala quântica) que era muito difícil para mim imaginar como ela poderia não estar lá", afirmou.

quarta-feira, 4 de julho de 2012

Cientistas descobrem partícula subatômica inédita

Experiências apontam que essa pode ser a chamada 'partícula de Deus'.
Novas pesquisas são necessárias para afirmar que este é o bóson de Higgs.

Tadeu MeniconiDo G1, em São Paulo
Info busca bóson de Higgs VALE ESTE (Foto: arte/G1)
Cientistas anunciaram nesta quarta-feira (4) a observação de uma partícula subatômica inédita até então. Eles veem fortes indícios de que se trate do “bóson de Higgs”, a “partícula de Deus”, única partícula prevista pela teoria vigente da física que ainda não tinha sido detectada em laboratórios, e que vinha sendo perseguida ao longo das últimas décadas.
Pela teoria, o bóson de Higgs teria dado origem à massa de todas as outras partículas. Se sua existência for confirmada, portanto, é um passo importante da ciência na compreensão da origem do Universo. Se ele não existisse, a teoria vigente deixaria de fazer sentido, e seria preciso elaborar novos modelos para substituí-la.
“Eu não tenho muita dúvida de que, na física de partículas, é o evento mais importante dos últimos 30 anos”, afirmou Sérgio Novaes, pesquisador da Universidade Estadual de São Paulo (Unesp), que faz parte da colaboração CMS. "Eu acho que é um momento histórico que a gente está vivendo", completou.
Apesar do grande impacto na física teórica, a descoberta ainda não representa um avanço direcionado a nenhum campo específico da tecnologia.
'Partícula de Deus'
O “bóson de Higgs” ganhou o apelido de “partícula de Deus” em 1993, depois que o físico Leon Lederman, ganhador do Nobel de 1988, publicou o livro “The God Particle” (literalmente “a partícula de Deus”, em inglês), voltado a explicar toda a teoria em volta do bóson de Higgs para o público leigo. Ainda não há edição desse livro em português.
A nova partícula tem características “consistentes” com o bóson de Higgs, mas os físicos ainda não afirmam com certeza que se trate da “partícula de Deus”. Para isso, eles vão coletar novos dados para observar se a partícula se comporta com as características esperadas do bóson de Higgs.
Maior máquina do mundo
O anúncio foi feito em Genebra, na Suíça, sede do Centro Europeu de Pesquisas Nucleares (Cern, na sigla em francês). As conclusões foram baseadas em dados obtidos no Grande Colisor de Hádrons (LHC, na sigla em inglês), acelerador de partículas construído pelo Cern ao longo de 27 quilômetros debaixo da terra, na fronteira entre a França e a Suíça.
Essa máquina, considerada a mais poderosa do mundo, foi construída especificamente para estudos de física de partículas, e a descoberta desta quarta é a mais importante que já foi feita lá.
Dois resultados, uma conclusão
A descoberta foi confirmada por especialistas do CMS e do Atlas, dois grupos de pesquisa independentes que fazem uso do LHC. Apesar de usarem o mesmo acelerador de partículas, as duas colaborações científicas trabalham com detectores diferentes e seus resultados são paralelos.
Os cientistas medem a massa das partículas como se fosse energia. Isso porque toda massa tem uma equivalência em energia. Se você calcula uma, tem o valor das duas. A unidade de medida usada é o gigaelétron-volt, ou "GeV".
No anúncio, o CMS disse que observou um “novo bóson com a massa de 125,3 GeV” – com margem de erro de 0,6 GeV para mais ou para menos – “em 4,9 sigmas de significância”. Esses “sigmas” medem a probabilidade dos resultados obtidos. O valor de 4,9 sigmas representa uma chance menor que um em 1 milhão de que os resultados sejam mera coincidência. Por isso, os cientistas consideram esse número como uma confirmação da descoberta.
Paralelamente, o grupo Atlas afirmou que “exclui a não-existência de uma partícula com a massa de 126,5 GeV, com a probabilidade de 5 sigmas”. A pequena diferença entre os números dos dois grupos -- de 125,3 GeV para 126,5 GeV -- não é considerada significativa pelos físicos.
Em 2011, pesquisadores dos dois grupos de pesquisa do Cern já haviam “encurralado” o bóson de Higgs, quando identificaram a faixa em que encontrariam a partícula – a massa estaria entre 115 GeV e 130 GeV.
Na última segunda, pesquisadores norte-americanos também tinham encontrado “forte evidência” da existência da partícula, em experiências com um acelerador próprio, o Tevatron.
Ilustração de uma colisão entre partículas promovida pelo acelerador LHC. É com experimentos como esse que os cientistas estudam partículas como o bóson de Higgs (Foto: Cern)
Ilustração de uma colisão entre partículas promovida pelo acelerador LHC. É com experimentos como esse que os cientistas estudam partículas como o bóson de Higgs (Foto: Cern)
Decaimento
Um dos motivos pelos quais é tão difícil detectar o bóson de Higgs é a sua instabilidade. Essa partícula dura muito pouco tempo e rapidamente se transforma – decai, no jargão científico – em outras. Para encontrar a nova partícula anunciada nesta quarta, eles estudaram o resultado destes decaimentos.

Tanto o CMS quanto Atlas concentraram seus esforços em duas partículas específicas: os fótons, que é como a luz se manifesta, e os bósons Z, que medeiam a chamada força fraca. O resultado foi suficiente para identificar a existência de uma partícula inédita, mas não para caracterizá-la em detalhes.
Para confirmar se o bóson descoberto é mesmo a “partícula de Deus”, será necessário estudar a fundo os decaimentos. O Modelo Padrão – conjunto de teorias mais aceito para explicar as interações da natureza e as partículas fundamentais que constituem a matéria – prevê o decaimento do bóson de Higgs em diferentes partículas, cada uma em determinada quantidade.
O próximo passo dos cientistas é testar os vários decaimentos decorrentes dessa partícula. Se os resultados continuarem sendo coerentes com o Modelo Padrão, será confirmado que ela é mesmo o bóson de Higgs.
Caso haja divergências, pode ser que explicações teóricas alternativas sejam adotadas. Já existe uma, chamada de supersimetria, que faz adendos ao Modelo Padrão e prevê a existência de vários bósons de Higgs com pequenas divergências entre si. Enquanto estas experiências não mostrarem resultados, é impossível afirmar qual dos modelos se adéqua melhor à natureza.
Representação gráfica de colisão de prótons realizada no LHC (Foto: Fabrice Coffrini/AFP)
Representação gráfica de colisão de prótons realizada no LHC (Foto: Fabrice Coffrini/AFP)
saiba mais